
Te&dicdmn Letters, Vol. 35. No. 4. pp. 605-608. 1594 
izlscviier SciaPx Ltd Pergamon 

RilltCdiIICkstBrilain 
oMo-lQ39m 86.004.00 

004OXO9(93)E0285-R 

Photoinduced DNA Cleavage by Designed Molecules with 
Conjugated Ene-Yne-Ketene Functionalities 

Kazuhiko Nakatani,*tl Sachihiko Isoe,f Satoshi Maekawa,* and Isao Saito** 

btitute of Organic Chemisby. Faculty of Science, Osaka City University. Sumiyosi. Osaka 558. Japan 
*Bpartment of Synthe.tic Chemistry aad Biological Chemistry. Faculty of Engineering, 

Kyoto University, Kyotu 606-01, Japan 

Key Worok DNA cleavage. ene-yne-ketene. diawkerone, neocarzitwstath model 

Abstract: Upon photoirradiation, diazoketone I was found to induce single strand cleavage of plamid 
pBR322 DNA at concentration of 100 pM. Conjugate ene-yne moiety was essential for DNA-cleaving 
activities. 

Recent understanding of the activation mechanism of ene-diyne antibiotics such as neocarzinostatin 

@KS), caiicheamicin-esperarnicin and dynemicin has stimulated the design of novel artificial DNA-cleaving 

molecules.2 We are particularly interested in the DNA cleavage reaction induced by photo-triggd 

activation of physiologically stable molecules. 3 Such molecules would have great potentials in tumor 

photodynamic therapy. We now disclose herein a novel type of photoinduced DNA cleavage by 

diazoketones (1 and 2) which are designed as a model of neocarzinostatin chromophore (NCS-Chr) (5). 

6 

It has been postulated that labile NCS chromophore 5, being responsible for antitumor activity of 

NCS, generates a-sp2-diradical by nucleophilic attack of thiol via ene-yne-cumulene 6.4 It was also 

demonstrated that ene-yne-allene systems, e.g., 7, cyclize to u-sp%iiradical, which eventually causes DNA 

strand cleavage.5 We, thus, anticipated that a-sp2-dirxlical4 generated by a spontaneous cyclization ofene- 
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yne-ketene 36 would cleave DNA effectively. Accordingly, we have designed diazoketones 1 and 2 in 

order to generate ene-yne-ketene functionalitles in situ by photoinduced Wolff rearrangement. 

Synthesis of 1 and 2 was accomplished in a straightforward manner as shown in Scheme 1. 

Palladium catalyzed coupling of enol triflate 8 with phenylacetylene afforded ene-yne ester which was 

hydrolyzed to the corresponding acid 9. Acid chloride formation from 9 followed by treatment with 

diazoetbane and diaxomethane yielded l7 and 28 in moderate yields, respectively. 
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PhH; (d) CH3CHN2. ether, 64% for 1(2 steps); (e) CH2N2, ether, 50% for 2 (2 steps) 

The results of their thermal and photochemical reactions in toluene in the presence of 1,4- 

cyclohexadiene as hydrogen donor were summarized in Scheme 2. It was shown that 1 bearing methyl 

group at a position to the diazo group was mote reactive than 2 to produce radical cyclyzation product 109 

in a good yield by heating or as an only isolable product by photoirradiation. Generation of radical (e.g., 4, 

R=Me) as a transient species would also be supported by the fact that 10 was obtained only in a trace 

amount together with a considerable amount of complex polymeric products when the reaction was 

conducted without hydrogen donor. These observations were in good agreement with those repotted in the 

related diazoketone systems.10 The UV spectra of 1 and 2 were considerably different in each other as 

found Xmax 295 nm (e = 12.800) for 1 and 3 13 nm (E = 18,700) for 2. This difference may be explained in 

terms ofconformational difference as supported by calculations (PM3 in SPARTAN ver.2). showing that in 

the lowest energy conformation of 1 two planes of cyclopentene ring and carbonyl group were almost 

orthogonal (dihedral angle of ,X5-Cl-Cl’C2’ is 93.8’) (Figure l), while this was not the case for 

diazoketone 2.11 
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We have examined the DNA-cleaving activity of 1 

and 2 under photoirradiation conditions. Thus, 

supercoiled pBR322 plasmid DNA was kubated in the 

presence of 1 or 2 with 366 nm light at 0 ‘C. DNA 

cleavage was analyzed by agarose gel electrophoresis 

(Figures 2 and 3). Upon irradiation, quite effective 

single strand cleavage was observed iu the presence of 1 

at concentration of 100 pM (lanes 6 - S), while without 

h-radiation 1 was quite ineffective toward DNA cleavage 

even at concentration of 1 mh4 (lane 2). 

LCS-ClCl’-CX = 93.8 - 

Figure 1. Calculated conformation of 1 
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Figure 2. pBR322 DNA (40 pM) was irradiated at 366 nm st 0 l C @H 7.0, Na cacodylate) in the presence of 
drugs (added as CH3CN solution, maximum concentration of CH3CN in a fmal solutkm was 10%) and analyzed 
by agarose gel electrophwcsis (etbidium bromide staining). lanes 1.10: DNA alone, lane 2: l(1 mM) without 
photoirradiation, lanes 3. B; 1 (10 PM). lanes 4. 7; 1 (100 PM), lanes 5.8; I (1 mhf). lane 9; 12 (1 mM), 
Photoirradiation for 10 min &KS 3 - 5) or for 60 min (lane 1 and Iarms 6 - 10). 
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Figure 3. pBR322 DNA (40 pM) was irradiated at 366 nm at 0 % for 60 min (pH 7.0, Na cacodylate~) in the 

presenceofdwsandanalyzedbyaganxegdekct@mresis. lane~l.ll;~~~alone,lane2;1(10cr~).lane 
3; l(lOO l.tM), lane 4; I(1 mW lane 5; 2 (10 phi), lane 6; 2 (100 PM). lane 7: 2 (1 mM). lane 8; IO (10 
ll.W,lane9;10(100pr@.hle10;10(1mM). 
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Gfparticular intemst is that the ene-yne fimctionalities of 1 

were indispensable for the photoinduced DNA cleavage by 

obseaving that simple diazoketone 12 was totally ineffective even 

at concentration of 1 mM under the same photoirradiation 12 
conditions (lane 9). OR the other band, DNA-cleaving activity of 

2 was subs~nti~y weaker than that of 1 (lanes 2 - 4 for 1 VS. lanes 5 - 7 for 2 in Figure 3). Furthermore, 
phenol 10 did not cause DNA strand scission at comparable concentrations (lanes 8 - 10). 

It was apparent from these data that ene-yne-ketene functionalities pmduced in the photoiiradiation of 

t play an essential role in the DNA cleavage. Since the difference in phot~hemi~ reactivity between 1 

and 2 in toluene well reflects the DNA-cleaving properties and DNA was neither treated with base nor 

heating after photoirmdiation, the observed DNA cleavage is due to the hydrogen abstraction from DNA 

sugar backbone by a-spz-diradical 4 spon~~usly formed from ene-yne-lcetene. In fact, small but 

significant amount of 10 was actually detected by HPLC after photoirradiation of 1 in the presence of 

pBR322 DNA.12 
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